Computing Galois cohomology and forms of linear algebraic groups

dc.contributor.authorHaller, Sergei
dc.date.accessioned2023-06-30T15:14:14Z
dc.date.available2005-11-11T09:56:01Z
dc.date.available2023-06-30T15:14:14Z
dc.date.issued2005
dc.description.abstractWe design and implement algorithms for computation with groups of Lietype. Algorithms for element arithmetic in the Steinberg presentation ofuntwisted groups of Lie type, and for conversion between this presentationand linear representations, were given in [12] (building on work of [15]and [26]). We extend this work to twisted groups, including groups thatare not quasisplit. A twisted group of Lie type is the group of rational points of a twistedform of a reductive linear algebraic group. These forms are classified byGalois cohomology. In order to compute the Galois cohomology, we develop amethod for computing the cohomology of a finitely presented group $\Gamma$on a finite group $A$. This method is of interest in its own right. Wethen extend this method to the Galois cohomology of reductive linearalgebraic groups. We give algorithms for computing the relative root system of a twistedgroup of Lie type, the root subgroups, and the root elements, as well asalgorithms for the computing of relations between root elements. As an application, we develop an algorithm for computing all twistedmaximal tori of a finite group of Lie type. The order of such a torus iscomputed as a polynomial in $q$, the order of the field $k$. We alsocompute the orders of the factors in a decomposition of the torus as adirect product of cyclic subgroups.en
dc.identifier.isbn90-386-0664-8
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:hebis:26-opus-24743
dc.identifier.urihttps://jlupub.ub.uni-giessen.de//handle/jlupub/18159
dc.identifier.urihttp://dx.doi.org/10.22029/jlupub-17526
dc.language.isoende_DE
dc.rightsIn Copyright*
dc.rights.urihttp://rightsstatements.org/page/InC/1.0/*
dc.subjectGruppentheoriede_DE
dc.subjectLineare algebraische Gruppende_DE
dc.subjectCohomologiede_DE
dc.subjectComputeralgebrade_DE
dc.subjectgroup theoryen
dc.subjectlinear algebraic groupsen
dc.subjectcohomologyen
dc.subjectcomputer algebraen
dc.subject.ddcddc:510de_DE
dc.titleComputing Galois cohomology and forms of linear algebraic groupsen
dc.typebookde_DE
local.affiliationExterne Einrichtungen
local.opus.fachgebietExterne Einrichtungende_DE
local.opus.id2474
local.opus.instituteFaculteit Wiskunde en Informatica (Technische Universiteit Eindhoven); Mathematisches Institut der Justus-Liebig-Universität Giessende_DE
local.source.freetextZugl.: Eindhoven, Technische Universiteit, Proefschrift, 2005de_DE

Dateien

Originalbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
HallerSergei-2005-10-12.pdf
Größe:
667.06 KB
Format:
Adobe Portable Document Format