Nirenberg problem on high dimensional spheres : blow up with residual mass phenomenon

dc.contributor.authorAhmedou, Mohameden
dc.contributor.authorBen Ayed, Mohamed
dc.contributor.authorEl Mehdi, Khalil
dc.date.accessioned2026-01-16T14:19:49Z
dc.date.available2026-01-16T14:19:49Z
dc.date.issued2025
dc.description.abstractIn this paper, we extend the analysis of the subcritical approximation of the Nirenberg problem on spheres recently conducted in Malchiodi and Mayer(J Differ Equ 268(5):2089–2124, 2020; Int Math Res Not 18:14123–14203, 2021). Specifically, we delve into the scenario where the sequence of blowing up solutions exhibits a non-zero weak limit, which necessarily constitutes a solution of the Nirenberg problem itself. Our focus lies in providing a comprehensive description of such blowing up solutions, including precise determinations of blow-up points and blow-up rates. Additionally, we compute the topological contribution of these solutions to the difference in topology between the level sets of the associated Euler-Lagrange functional. Such an analysis is intricate due to the potential degeneracy of the solutions involved. We also provide a partial converse, wherein we construct blowing up solutions when the weak limit is non-degenerate.en
dc.identifier.urihttps://jlupub.ub.uni-giessen.de/handle/jlupub/21239
dc.identifier.urihttps://doi.org/10.22029/jlupub-20584
dc.language.isoen
dc.rightsNamensnennung 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddcddc:510
dc.subject.ddcddc:004
dc.titleNirenberg problem on high dimensional spheres : blow up with residual mass phenomenon
dc.typearticle
local.affiliationFB 07 - Mathematik und Informatik, Physik, Geographie
local.source.articlenumber2
local.source.journaltitleNonlinear differential equations and applications
local.source.urihttps://doi.org/10.1007/s00030-024-01004-8
local.source.volume32

Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
10.1007_s00030-024-01004-8.pdf
Größe:
597.26 KB
Format:
Adobe Portable Document Format