Critical Points of Kirchhoff-Routh-Type Functions
dc.contributor.advisor | Bartsch, Thomas | |
dc.contributor.advisor | Ahmedou, Mohameden | |
dc.contributor.author | Fiernkranz, Tim | |
dc.date.accessioned | 2021-12-08T14:31:17Z | |
dc.date.available | 2021-12-08T14:31:17Z | |
dc.date.issued | 2021 | |
dc.description.abstract | For $2\le N\in \N$ and $\G_i\in \R\setminus\{0\}$ we proof that functions of the form $$ H_\G (p_1,\dots, p_N) = \sum_{i\ne j} \G_i\G_j G(p_i,p_j) + \sum_{i=1}^N \G_i^2 R(p_i) , $$ admit critical points under various circumstances. The $p_i$ will either belong to an open, bounded subset $\gO\subset \R^d$ with smooth boundary for $d \ge 3$ or to a compact, two dimensional, riemanian manifold $(\gS ,g )$. Furthermore, $G$ is a (Dirichlet) Green's function of the negative Laplacian $-\gD$ associated to $\gO$ or $(\gS, g)$ and $R$ is its Robin's function.\\ For the case of an open set, we also consider the function $\gr$ that is the least eigenvalue of the matrix $$ (M(x_1,\dots,x_N))_{i,j=1}^N := \begin{cases} -G(x_i , x_j),& i\ne j\\ R(x_i),& i=j . \end{cases} $$ To achieve the critical points, we also calculate appropriate approximations of the Green's function and Robin's function when close to their singularities. | de_DE |
dc.identifier.uri | https://jlupub.ub.uni-giessen.de//handle/jlupub/371 | |
dc.identifier.uri | http://dx.doi.org/10.22029/jlupub-307 | |
dc.language.iso | en | de_DE |
dc.subject | Critical Points | de_DE |
dc.subject | Vortex Dynamics | de_DE |
dc.subject | Greens Function | de_DE |
dc.subject.ddc | ddc:510 | de_DE |
dc.title | Critical Points of Kirchhoff-Routh-Type Functions | de_DE |
dc.type | doctoralThesis | de_DE |
dcterms.dateAccepted | 2021-11-02 | |
local.affiliation | FB 07 - Mathematik und Informatik, Physik, Geographie | de_DE |
thesis.level | thesis.doctoral | de_DE |
Dateien
Originalbündel
1 - 1 von 1
Lade...
- Name:
- FiernkranzTim-2021-11-02.pdf
- Größe:
- 636.51 KB
- Format:
- Adobe Portable Document Format
- Beschreibung:
Lizenzbündel
1 - 1 von 1
Vorschaubild nicht verfügbar
- Name:
- license.txt
- Größe:
- 7.58 KB
- Format:
- Item-specific license agreed upon to submission
- Beschreibung: