Functional Ito-Calculus for Superprocesses and the Historical Martingale Representation

dc.contributor.authorMandler, Christian
dc.date.accessioned2023-02-09T15:34:50Z
dc.date.available2021-06-02T13:41:29Z
dc.date.available2023-02-09T15:34:50Z
dc.date.issued2021
dc.description.abstractWe derive the functional Ito-formula for Dawson-Watanabe superprocesses, a well-known class of measure-valued processes. In addition, we show that by extending the functional derivative used in the functional Ito-formula we obtain the integrand in the martingale representation formula for square-integrable F_t-martingales. In this case, F_t is the filtration generated by an underlying superprocess. This result is finally extended to square-integrable historical martingales, i.e. square-integrable H_t-martingales with H_t being the filtration generated by a historical Brownian motion.en
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:hebis:26-opus-160991
dc.identifier.urihttps://jlupub.ub.uni-giessen.de//handle/jlupub/10463
dc.identifier.urihttp://dx.doi.org/10.22029/jlupub-9847
dc.language.isoende_DE
dc.rightsIn Copyright*
dc.rights.urihttp://rightsstatements.org/page/InC/1.0/*
dc.subject.ddcddc:510de_DE
dc.titleFunctional Ito-Calculus for Superprocesses and the Historical Martingale Representationen
dc.title.alternativeFunktionaler Ito-Kalkül für Superprozesse und die historische Martingaldarstellungde_DE
dc.typedoctoralThesisde_DE
dcterms.dateAccepted2021-05-20
local.affiliationFB 07 - Mathematik und Informatik, Physik, Geographiede_DE
local.opus.fachgebietMathematikde_DE
local.opus.id16099
local.opus.instituteMathematisches Institutde_DE
thesis.levelthesis.doctoralde_DE

Dateien

Originalbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
MandlerChristian_2021_05_20.pdf
Größe:
847.45 KB
Format:
Adobe Portable Document Format