High accuracy quasi-interpolation using a new class of generalized multiquadrics
| dc.contributor.author | Ortmann, Mathis | |
| dc.contributor.author | Buhmann, Martin | |
| dc.date.accessioned | 2025-11-14T14:24:53Z | |
| dc.date.available | 2025-11-14T14:24:53Z | |
| dc.date.issued | 2024 | |
| dc.description.abstract | A new generalization of multiquadric functions phi ( x ) = root c(2d) + || x ||(2d) , where x is an element of R-n , c is an element of R, d is an element of N, is presented to increase the accuracy of quasi -interpolation further. With the restriction to Euclidean spaces of odd dimensionality, the generalization can be used to generate a quasi -Lagrange operator that reproduces all polynomials of degree 2 d - 1. In contrast to the classical multiquadric, the convergence rate of the quasi -interpolation operator can be significantly improved by a factor h(2d -n - 1) , where h > 0 represents the grid spacing. Among other things, we compute the generalized Fourier transform of this new multiquadric function. Finally, an infinite regular grid is employed to analyse the properties of the aforementioned generalization in detail. We also present numerical results to demonstrate the advantages of our new multiquadric functions. | en |
| dc.identifier.uri | https://jlupub.ub.uni-giessen.de/handle/jlupub/21029 | |
| dc.identifier.uri | https://doi.org/10.22029/jlupub-20378 | |
| dc.language.iso | en | |
| dc.rights | Namensnennung 4.0 International | |
| dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
| dc.subject.ddc | ddc:510 | |
| dc.subject.ddc | ddc:004 | |
| dc.title | High accuracy quasi-interpolation using a new class of generalized multiquadrics | |
| dc.type | article | |
| local.affiliation | FB 07 - Mathematik und Informatik, Physik, Geographie | |
| local.source.articlenumber | 128359 | |
| local.source.journaltitle | Journal of mathematical analysis and applications | |
| local.source.uri | https://doi.org/10.1016/j.jmaa.2024.128359 | |
| local.source.volume | 538 |
Dateien
Originalbündel
1 - 1 von 1
Lade...
- Name:
- 10.1016_j.jmaa.2024.128359.pdf
- Größe:
- 407.1 KB
- Format:
- Adobe Portable Document Format