High accuracy quasi-interpolation using a new class of generalized multiquadrics

dc.contributor.authorOrtmann, Mathis
dc.contributor.authorBuhmann, Martin
dc.date.accessioned2025-11-14T14:24:53Z
dc.date.available2025-11-14T14:24:53Z
dc.date.issued2024
dc.description.abstractA new generalization of multiquadric functions phi ( x ) = root c(2d) + || x ||(2d) , where x is an element of R-n , c is an element of R, d is an element of N, is presented to increase the accuracy of quasi -interpolation further. With the restriction to Euclidean spaces of odd dimensionality, the generalization can be used to generate a quasi -Lagrange operator that reproduces all polynomials of degree 2 d - 1. In contrast to the classical multiquadric, the convergence rate of the quasi -interpolation operator can be significantly improved by a factor h(2d -n - 1) , where h > 0 represents the grid spacing. Among other things, we compute the generalized Fourier transform of this new multiquadric function. Finally, an infinite regular grid is employed to analyse the properties of the aforementioned generalization in detail. We also present numerical results to demonstrate the advantages of our new multiquadric functions.en
dc.identifier.urihttps://jlupub.ub.uni-giessen.de/handle/jlupub/21029
dc.identifier.urihttps://doi.org/10.22029/jlupub-20378
dc.language.isoen
dc.rightsNamensnennung 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddcddc:510
dc.subject.ddcddc:004
dc.titleHigh accuracy quasi-interpolation using a new class of generalized multiquadrics
dc.typearticle
local.affiliationFB 07 - Mathematik und Informatik, Physik, Geographie
local.source.articlenumber128359
local.source.journaltitleJournal of mathematical analysis and applications
local.source.urihttps://doi.org/10.1016/j.jmaa.2024.128359
local.source.volume538

Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
10.1016_j.jmaa.2024.128359.pdf
Größe:
407.1 KB
Format:
Adobe Portable Document Format