Critical Points of Kirchhoff-Routh-Type Functions

Lade...
Vorschaubild

Datum

Weitere Beteiligte

Beteiligte Institutionen

Herausgeber

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Zusammenfassung

For $2\le N\in \N$ and $\G_i\in \R\setminus\{0\}$ we proof that functions of the form $$ H_\G (p_1,\dots, p_N) = \sum_{i\ne j} \G_i\G_j G(p_i,p_j) + \sum_{i=1}^N \G_i^2 R(p_i) , $$ admit critical points under various circumstances. The $p_i$ will either belong to an open, bounded subset $\gO\subset \R^d$ with smooth boundary for $d \ge 3$ or to a compact, two dimensional, riemanian manifold $(\gS ,g )$. Furthermore, $G$ is a (Dirichlet) Green's function of the negative Laplacian $-\gD$ associated to $\gO$ or $(\gS, g)$ and $R$ is its Robin's function.\\ For the case of an open set, we also consider the function $\gr$ that is the least eigenvalue of the matrix $$ (M(x_1,\dots,x_N))_{i,j=1}^N := \begin{cases} -G(x_i , x_j),& i\ne j\\ R(x_i),& i=j . \end{cases} $$ To achieve the critical points, we also calculate appropriate approximations of the Green's function and Robin's function when close to their singularities.

Verknüpfung zu Publikationen oder weiteren Datensätzen

Beschreibung

Anmerkungen

Erstpublikation in

Erstpublikation in

Sammelband

URI der Erstpublikation

Forschungsdaten

Schriftenreihe

Zitierform