Finiteness properties of S-arithmetic subgroups of Chevalley groups in characteristic 0

Datum

Betreuer/Gutachter

Weitere Beteiligte

Herausgeber

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Zusammenfassung

We consider in this thesis S-arithmetic subgroups of certain algebraic matrix groups de ned over Q. The simplest example of such a group is Γ = SLn(Z[1/p]). Each of these groups is of type F∞ by a well-known result of Borel and Serre. On a formal level, this means that there is a K(Γ, 1) complex with finite m-skeleton for every m ∈ N. A nice consequence is that Γ is finitely presented. While the method of Borel and Serre is more algebraic, we give here a new, purely geometric, proof that uses Morse theory.
Doing so, we first develop the terminology of a Morse function without critical values greater than a constant r > 0, which is de ned on the product of a Riemannian manifold and a metric space. After that, we deduce some properties from the reduction theory of S-arithmetic groups, which we translate into geometric terms to a space X, on which our group acts canonically.
Finally, we construct a real-valued function on that space. We show that this is a Morse function in the sense above. From that we deduce the statement concerning the niteness properties of the group.

Beschreibung

Inhaltsverzeichnis

Anmerkungen

Erstpublikation in

Sammelband

URI der Erstpublikation

Forschungsdaten

Schriftenreihe

Erstpublikation in

Zitierform