Finiteness properties of S-arithmetic subgroups of Chevalley groups in characteristic 0

dc.contributor.advisorWitzel, Stefan
dc.contributor.authorKirschner, Lovis Yannik
dc.date.accessioned2025-06-16T13:06:44Z
dc.date.available2025-06-16T13:06:44Z
dc.date.issued2025
dc.description.abstractWe consider in this thesis S-arithmetic subgroups of certain algebraic matrix groups de ned over Q. The simplest example of such a group is Γ = SLn(Z[1/p]). Each of these groups is of type F∞ by a well-known result of Borel and Serre. On a formal level, this means that there is a K(Γ, 1) complex with finite m-skeleton for every m ∈ N. A nice consequence is that Γ is finitely presented. While the method of Borel and Serre is more algebraic, we give here a new, purely geometric, proof that uses Morse theory. Doing so, we first develop the terminology of a Morse function without critical values greater than a constant r > 0, which is de ned on the product of a Riemannian manifold and a metric space. After that, we deduce some properties from the reduction theory of S-arithmetic groups, which we translate into geometric terms to a space X, on which our group acts canonically. Finally, we construct a real-valued function on that space. We show that this is a Morse function in the sense above. From that we deduce the statement concerning the niteness properties of the group.
dc.identifier.urihttps://jlupub.ub.uni-giessen.de/handle/jlupub/20611
dc.identifier.urihttps://doi.org/10.22029/jlupub-19961
dc.language.isoen
dc.rightsIn Copyright
dc.rights.urihttp://rightsstatements.org/page/InC/1.0/
dc.subject.ddcddc:510
dc.titleFiniteness properties of S-arithmetic subgroups of Chevalley groups in characteristic 0
dc.title.alternativeEndlichkeitseigenschaften S-arithmetischer Gruppen in Charakteristik 0
dc.typedoctoralThesis
dcterms.dateAccepted2025-06-11
local.affiliationFB 07 - Mathematik und Informatik, Physik, Geographie
thesis.levelthesis.doctoral

Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
KirschnerLovisYannik-2025-06-11.pdf
Größe:
1.12 MB
Format:
Adobe Portable Document Format

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
license.txt
Größe:
7.58 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: